Off-Site Learning Packet Day 3

Graphing Lines Review

EXAMPLES:

Graphing Lines Using Slope and a Point 1.

Graph each line

a line with slope $\frac{2}{3}$ that passes through (1,1)

a line with slope $-\frac{1}{3}$ and passes through (-2,3)b)

2. **Graphing Lines Using the Intercepts**

Find the x- and y-intercepts of the equation and then graph the line.

a)
$$2x - 3y = 12$$

$$x - intercept: 2x - 3(0) = 12$$

$$y - intercept: 2(0) - 3y = 12$$

$$2x - 3y = 12$$

$$2x = 12$$

$$x = 6$$

$$-3y = 12$$

$$y = -4$$

b)
$$6x - 2y = -24$$

$$x - intercept: 6x - 2(0) = -24$$
 $y - intercept: 6(0) - 2y = -24$

$$y - intercept: 6(0) - 2y = -24$$

$$6x = -24$$

$$-2y = -24$$

$$x = -4$$

$$y = 12$$

3. Graphing Functions in Slope-Intercept Form

Write each function in slope-intercept form. Then graph the function.

a)
$$3x + y = 5$$

$$y = 5 - 3x$$

$$m = -3$$

$$b = 5$$

b)
$$\frac{3}{2}y = x - 3$$

$$y = \frac{2}{3}(x-3)$$

$$y = \frac{2}{3}x - 2$$

$$m = \frac{2}{3}$$

$$b = -2$$

4. Graphing Linear Inequalities

Graph each inequality

a)
$$y < \frac{1}{2}x + 1$$

The boundary line will be dashed because of <.

Use (0,0) as the test point.

$$0 < \frac{1}{2}(0) + 1$$
 Yes, so shade on the side of the line as $(0,0)$

b)
$$y \ge 2$$

The boundary line will be solid because of \geq .

Use (0,0) as the test point.

 $0 \ge 2$ No, so shade on the side of the line opposite of (0,0)

Name:

Date: _____ Period: _____

Off-Site Learning Packet Day 3

Graph Linear Equations and Inequalities

1.
$$f(x) = \frac{7}{2}x - 2$$

$$2. \qquad f(x) = -6x + 3$$

$$3. \qquad f(x) = 3$$

4.
$$x = -5$$

5.
$$7x + y = 5$$

6.
$$10x - 3y = 15$$

$$7. \qquad f(x) \ge -3x + 4$$

8.
$$f(x) < \frac{3}{5}x - 5$$

9.
$$f(x) > 2x - 5$$

10.
$$x < -5$$

11.
$$5x - 3y \le -15$$

12.
$$x - y > 2$$

